TETRATHIONATE BROTH BASE (7241)

Intended Use

Tetrathionate Broth Base is used with iodine for the recovery of Salmonella spp.

Product Summary and Explanation

Tetrathionate Broth Base is used as a selective enrichment for the cultivation of *Salmonella* spp. that may be present in small numbers and compete with intestinal flora. *Salmonella* organisms may also be injured in food-processing procedures, which include exposure to low temperatures, sub-marginal heat, drying, radiation, preservative, and sanitizers.¹ *Salmonella* spp. cause many types of infections, from mild self-limiting gastroenteritis to life-threatening typhoid fever.²

Mueller³ demonstrated the effectiveness of Tetrathionate Broth for enriching typhoid and paratyphoid bacilli while inhibiting coliform organisms. Using modified Mueller's broth, Kauffmann^{4,5} increased the number of positive isolates. Tetrathionate Broth was used in studies for the poultry industry^{6,7} and in a collaborative study for rapid screening of *Salmonella* in food.⁸ Tetrathionate Broth Base, abbreviated as TT Broth Base, is specified in standard methods⁹⁻¹² for *Salmonella* testing. Tetrathionate Broth Base is used in processing fecal cultures for bacteria.¹³

Principles of the Procedure

Enzymatic Digest of Casein and Enzymatic Digest of Animal Tissue provides nitrogen, carbon, vitamins, and amino acids in Tetrathionate Broth Base. Selectivity is accomplished by the combination of Sodium Thiosulfate and tetrathionate, which suppresses commensal intestinal organisms.¹⁴ Tetrathionate is formed in the medium upon addition of the iodine and potassium iodide solution. Organisms containing the enzyme tetrathionate reductase will proliferate in the medium. Bile Salts, a selective agent, suppresses colliform bacteria and inhibits Gram-positive organisms. Calcium Carbonate neutralizes and absorbs toxic metabolites.

<u> Formula / Liter</u>

Enzymatic Digest of Casein	2.5 g	
Enzymatic Digest of Animal Tissue	2.5 g	
Bile Salts	1 g	
Calcium Carbonate	10 g	
Sodium Thiosulfate	30 g	
Final pH: 8.4 ± 0.2 at 25°C	_	
Formula may be adjusted and/or supplemented as required to meet performance specifications.		

Precautions

- 1. For Laboratory Use.
- 2. HARMFUL. Harmful if swallowed or inhaled. Irritating to eyes, respiratory system, and skin.

Directions

- 1. Dissolve 46 g of the medium in one liter of purified water.
- 2. Heat with frequent agitation to boiling.
- 3. Cool to 45°C and add 20 mL of an iodine-iodide solution (6 grams iodine + 5 grams potassium iodide in 20 mL of purified water). DO NOT REHEAT AFTER ADDING IODINE.

Quality Control Specifications

Dehydrated Appearance: Powder is homogeneous, free flowing, and white.

Prepared Appearance: Prepared medium is milky white and opaque.

Expected Cultural Response: Cultural response after enrichment in Tetrathionate Broth Base (with the iodine solution) and subcultured to MacConkey Agar at 35°C after 18 - 24 hours incubation.

Microorganism	Response
Escherichia coli ATCC® 25922	inhibited
Salmonella arizonae ATCC® 13314	good growth
Salmonella typhimurium ATCC® 14028	good growth
Shigella flexneri ATCC® 12022	inhibited

The organisms listed are the minimum that should be used for quality control testing.

Test Procedure

For a complete discussion of the isolation and identification of Salmonella, refer to appropriate references.

<u>Results</u>

Refer to appropriate references for results.

Storage

Store sealed bottle containing the dehydrated medium at 2 - 30°C. Once opened and recapped, place container in a low humidity environment at the same storage temperature. Protect from moisture and light by keeping container tightly closed.

Expiration

Refer to expiration date stamped on the container. The dehydrated medium should be discarded if not free flowing, or if the appearance has changed from the original color. Expiry applies to medium in its intact container when stored as directed.

Limitation of the Procedure

Due to nutritional variation, some strains may grow poorly or fail to grow on this medium.

Packaging			
Tetrathionate Broth Base	Code No.	7241A	500 g
		7241B	2 kg
		7241C	10 kg

References

- 1. Hartman, P. A., and S. A. Minnich. 1981. Automation for rapid identification of salmonellae in foods. J. Food Prot. 44:385-386.
- 2. Murray, P. R., E. J. Baron, M. A. Pfaller, F. C. Tenover, and R. H. Yolken (eds.). 1995. Manual of clinical microbiology, 6th ed. American Society for Microbiology, Washington, D.C.
- 3. **Mueller, L.** 1923. Un Nouveau milieu d'enrichissement pour la recherche du bacille typhique et des paratyphiques. C. R. Soc. Bio. **89:**434. Paris.
- 4. Kauffmann, F. 1930. Ein kombiniertes anreicherungsverfahren fur typhus und-paratyphusbacillen. Zentralb. Bakteriol. Parasitenke. Infektionskr. Hyg. Abr. I orig. **113:**148.
- 5. **Kauffman, F.** 1935. Weitere Erfahrungen mit den kombiniereten Anreicherungsverfahren fur Salmonella bacillen. Z. Hyg. Infektionskr. **117:**26.
- 6. Jones, F. T., R. C. Axtell, D. V. Rives, S. E. Scheideler, F. R. Tarver, Jr., R. L. Walker, and M. J. Wineland. 1991. A survey of Salmonella contamination in modern broiler production. J. Food Prot. 54:502-507.
- 7. Barnhart, H. M., D. W. Dressen, R. Bastien, and O. C. Pancorbo. 1991. Prevalence of *Salmonella enteritidis* and other serovars in ovaries of layer hens at time of slaughter. J. Food Prot. **54**:488-492.
- Eckner, K. F., W. A. Dustman, M. S. Curiale, R. S. Flowers, and B. J. Robison. 1994. Elevated-temperature, colorimetric, monoclonal, enzyme linked immunosorbent assay for rapid screening of *Salmonella* in foods; collaborative study. J. Assoc. Off. Anal Chem. 77:374-383.
- 9. Vanderzant, C., and D. F. Splittstoesser (eds.). 1992. Compendium of methods for the microbiological examination of foods, 3rd ed. American Public Health Association, Washington, D.C.
- 10. Marshall, R. T. (ed.). 1993. Standard methods for the examination of dairy products. 16th ed. American Public Health Association, Washington, D.C.
- 11. **United States Pharmacopeial Convention.** 1995. The United States pharmacopeia, 23rd ed. The United States Pharmacopeial Convention. Rockville, MD.
- 12. Federal Register. 1991. Animal and plant health inspection service: chicken affected by Salmonella enteritidis, final rule, Fed. Regist. 56:3730-3743.
- 13. Isenberg, H. D. (ed.). 1992 Clinical microbiology procedures handbook, vol. 1, American Society for Microbiology. Washington, D. C.
- 14. Knox, R., P. H. Gell, and M. R. Pollack. 1942. Selective media for organisms of the Salmonella group. J. Pathol. Bacteriol. 54:469-483.

Technical Information

Contact Acumedia Manufacturers, Inc. for Technical Service or questions involving dehydrated culture media preparation or performance at (410)780-5120 or fax us at (410)780-5470.